Introduction to Algorithms

Third Edition

The MIT Press
Cambridge, Massachusetts London, England
Contents

Preface xiii

I Foundations

Introduction 3

1 The Role of Algorithms in Computing 5
1.1 Algorithms 5
1.2 Algorithms as a technology 11

2 Getting Started 16
2.1 Insertion sort 16
2.2 Analyzing algorithms 23
2.3 Designing algorithms 29

3 Growth of Functions 43
3.1 Asymptotic notation 43
3.2 Standard notations and common functions 53

4 Divide-and-Conquer 65
4.1 The maximum-subarray problem 68
4.2 Strassen's algorithm for matrix multiplication 75
4.3 The substitution method for solving recurrences 83
4.4 The recursion-tree method for solving recurrences 88
4.5 The master method for solving recurrences 93
★ 4.6 Proof of the master theorem 97

5 Probabilistic Analysis and Randomized Algorithms 114
5.1 The hiring problem 114
5.2 Indicator random variables 118
5.3 Randomized algorithms 122
★ 5.4 Probabilistic analysis and further uses of indicator random variables 130
II Sorting and Order Statistics

Introduction 147

6 Heapsort 151
6.1 Heaps 151
6.2 Maintaining the heap property 154
6.3 Building a heap 156
6.4 The heapsort algorithm 159
6.5 Priority queues 162

7 Quicksort 170
7.1 Description of quicksort 170
7.2 Performance of quicksort 174
7.3 A randomized version of quicksort 179
7.4 Analysis of quicksort 180

8 Sorting in Linear Time 191
8.1 Lower bounds for sorting 191
8.2 Counting sort 194
8.3 Radix sort 197
8.4 Bucket sort 200

9 Medians and Order Statistics 213
9.1 Minimum and maximum 214
9.2 Selection in expected linear time 215
9.3 Selection in worst-case linear time 220

III Data Structures

Introduction 229

10 Elementary Data Structures 232
10.1 Stacks and queues 232
10.2 Linked lists 236
10.3 Implementing pointers and objects 241
10.4 Representing rooted trees 246

11 Hash Tables 253
11.1 Direct-address tables 254
11.2 Hash tables 256
11.3 Hash functions 262
11.4 Open addressing 269
11.5 Perfect hashing 277
12 Binary Search Trees 286
12.1 What is a binary search tree? 286
12.2 Querying a binary search tree 289
12.3 Insertion and deletion 294
★ 12.4 Randomly built binary search trees 299

13 Red-Black Trees 308
13.1 Properties of red-black trees 308
13.2 Rotations 312
13.3 Insertion 315
13.4 Deletion 323

14 Augmenting Data Structures 339
14.1 Dynamic order statistics 339
14.2 How to augment a data structure 345
14.3 Interval trees 348

IV Advanced Design and Analysis Techniques

15 Dynamic Programming 359
15.1 Rod cutting 360
15.2 Matrix-chain multiplication 370
15.3 Elements of dynamic programming 378
15.4 Longest common subsequence 390
15.5 Optimal binary search trees 397

16 Greedy Algorithms 414
16.1 An activity-selection problem 415
16.2 Elements of the greedy strategy 423
16.3 Huffman codes 428
★ 16.4 Matroids and greedy methods 437
★ 16.5 A task-scheduling problem as a matroid 443

17 Amortized Analysis 451
17.1 Aggregate analysis 452
17.2 The accounting method 456
17.3 The potential method 459
17.4 Dynamic tables 463
V Advanced Data Structures

18 B-Trees 484
18.1 Definition of B-trees 488
18.2 Basic operations on B-trees 491
18.3 Deleting a key from a B-tree 499

19 Fibonacci Heaps 505
19.1 Structure of Fibonacci heaps 507
19.2 Mergeable-heap operations 510
19.3 Decreasing a key and deleting a node 518
19.4 Bounding the maximum degree 523

20 van Emde Boas Trees 531
20.1 Preliminary approaches 532
20.2 A recursive structure 536
20.3 The van Emde Boas tree 545

21 Data Structures for Disjoint Sets 561
21.1 Disjoint-set operations 561
21.2 Linked-list representation of disjoint sets 564
21.3 Disjoint-set forests 568
21.4 Analysis of union by rank with path compression 573

VI Graph Algorithms

22 Elementary Graph Algorithms 589
22.1 Representations of graphs 589
22.2 Breadth-first search 594
22.3 Depth-first search 603
22.4 Topological sort 612
22.5 Strongly connected components 615

23 Minimum Spanning Trees 624
23.1 Growing a minimum spanning tree 625
23.2 The algorithms of Kruskal and Prim 631
24 Single-Source Shortest Paths 643
24.1 The Bellman-Ford algorithm 651
24.2 Single-source shortest paths in directed acyclic graphs 655
24.3 Dijkstra’s algorithm 658
24.4 Difference constraints and shortest paths 664
24.5 Proofs of shortest-paths properties 671

25 All-Pairs Shortest Paths 684
25.1 Shortest paths and matrix multiplication 686
25.2 The Floyd-Warshall algorithm 693
25.3 Johnson’s algorithm for sparse graphs 700

26 Maximum Flow 708
26.1 Flow networks 709
26.2 The Ford-Fulkerson method 714
26.3 Maximum bipartite matching 732
★ 26.4 Push-relabel algorithms 736
★ 26.5 The relabel-to-front algorithm 748

VII Selected Topics

Introduction 769

27 Multithreaded Algorithms 772
27.1 The basics of dynamic multithreading 774
27.2 Multithreaded matrix multiplication 792
27.3 Multithreaded merge sort 797

28 Matrix Operations 813
28.1 Solving systems of linear equations 813
28.2 Inverting matrices 827
28.3 Symmetric positive-definite matrices and least-squares approximation 832

29 Linear Programming 843
29.1 Standard and slack forms 850
29.2 Formulating problems as linear programs 859
29.3 The simplex algorithm 864
29.4 Duality 879
29.5 The initial basic feasible solution 886
30 Polynomials and the FFT 898
 30.1 Representing polynomials 900
 30.2 The DFT and FFT 906
 30.3 Efficient FFT implementations 915

31 Number-Theoretic Algorithms 926
 31.1 Elementary number-theoretic notions 927
 31.2 Greatest common divisor 933
 31.3 Modular arithmetic 939
 31.4 Solving modular linear equations 946
 31.5 The Chinese remainder theorem 950
 31.6 Powers of an element 954
 31.7 The RSA public-key cryptosystem 958
 ★ 31.8 Primality testing 965
 ★ 31.9 Integer factorization 975

32 String Matching 985
 32.1 The naive string-matching algorithm 988
 32.2 The Rabin-Karp algorithm 990
 32.3 String matching with finite automata 995
 ★ 32.4 The Knuth-Morris-Pratt algorithm 1002

33 Computational Geometry 1014
 33.1 Line-segment properties 1015
 33.2 Determining whether any pair of segments intersects 1021
 33.3 Finding the convex hull 1029
 33.4 Finding the closest pair of points 1039

34 NP-Completeness 1048
 34.1 Polynomial time 1053
 34.2 Polynomial-time verification 1061
 34.3 NP-completeness and reducibility 1067
 34.4 NP-completeness proofs 1078
 34.5 NP-complete problems 1086

35 Approximation Algorithms 1106
 35.1 The vertex-cover problem 1108
 35.2 The traveling-salesman problem 1111
 35.3 The set-covering problem 1117
 35.4 Randomization and linear programming 1123
 35.5 The subset-sum problem 1128
VIII Appendix: Mathematical Background

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1143</td>
</tr>
<tr>
<td>A Summations</td>
<td>1145</td>
</tr>
<tr>
<td>A.1 Summation formulas and properties</td>
<td>1145</td>
</tr>
<tr>
<td>A.2 Bounding summations</td>
<td>1149</td>
</tr>
<tr>
<td>B Sets, Etc.</td>
<td>1158</td>
</tr>
<tr>
<td>B.1 Sets</td>
<td>1158</td>
</tr>
<tr>
<td>B.2 Relations</td>
<td>1163</td>
</tr>
<tr>
<td>B.3 Functions</td>
<td>1166</td>
</tr>
<tr>
<td>B.4 Graphs</td>
<td>1168</td>
</tr>
<tr>
<td>B.5 Trees</td>
<td>1173</td>
</tr>
<tr>
<td>C Counting and Probability</td>
<td>1183</td>
</tr>
<tr>
<td>C.1 Counting</td>
<td>1183</td>
</tr>
<tr>
<td>C.2 Probability</td>
<td>1189</td>
</tr>
<tr>
<td>C.3 Discrete random variables</td>
<td>1196</td>
</tr>
<tr>
<td>C.4 The geometric and binomial distributions</td>
<td>1201</td>
</tr>
<tr>
<td>C.5 The tails of the binomial distribution</td>
<td>1208</td>
</tr>
<tr>
<td>D Matrices</td>
<td>1217</td>
</tr>
<tr>
<td>D.1 Matrices and matrix operations</td>
<td>1217</td>
</tr>
<tr>
<td>D.2 Basic matrix properties</td>
<td>1222</td>
</tr>
</tbody>
</table>

Bibliography

1231

Index

1251