THE ROUTLEDGE COMPANION TO BIG HISTORY

Edited by Craig Benjamin, Esther Quaedackers and David Baker
CONTENTS

List of figures x
List of tables xiii
List of contributors xiv

Introductory chapters 1

Introduction to The Routledge Companion to Big History 3
Craig Benjamin, Esther Quaedackers and David Baker

1 What is big history? 16
David Christian

PART I

Big history and science 35

2 Big history and the study of time: the underlying temporalities of big history 37
Barry Wood

3 Big history and astronomy – space is big: the Fermi paradox: its relevance to big history and the human race 57
Jonathan Markley

4 Big history and macro-evolution: evolutionary principles and mechanisms at biological and social phases of the big history 72
Leonid E. Grinin, Andrei Korotayev and Alexander Markov
PART II
Big history, social science and the humanities

5 Big history and anthropology: our place in the multiverse: anthropology, civilization and big history
 Barry H. Rodrigue

6 Big history and archaeology: archaeology is big history
 Brian Fagan

7 Big history and philosophy: philosophical foundations of big history: why big history makes sense
 Armando Menéndez Víso

8 Big history and political science: science, the deep past, and the political
 Lowell Gustafson

9 Big history and historiography: deep tides and swirling foam: the influence of macro-historical trends on micro-historical events
 David Baker

10 Big history and critical theory: science, history and why theory matters
 David Blanks

11 Big history, morality and religion
 Cynthia Stokes Brown

PART III
Little big histories

12 A case for little big histories
 Esther Quaedackers

13 The little big history of the Nalón River, Asturias, Spain
 Olga García-Moreno, Diego Álvarez-Laó, Miguel Arbizu, Eduardo Dopta, Eva García-Vázquez, Joaquín García Sansegundo, Montserrat Jiménez-Sánchez, Laura Miralles, Ícaro Obeso, Ángel Rodríguez-Rey, Marco de la Rasilla Vives, Luis Vicente Sánchez Fernández, Luis Rodríguez Terente, Luigi Toffolatti and Pablo Turro
Contents

14 Sketch of a little big history of Private E.E. Benjamin and the Great War
Craig Benjamin 320

PART IV
Teaching big history 337

15 The Big History Project in Australia
Tracy Sullivan 339

16 Big history teaching in Korea
Seohyung Kim 361

17 Crossing thresholds: using big history to meet challenges in teaching and learning in the United States
Robert B. Bain 372

PART V
Big history and the future 395

18 Big history and the future of technology
Leonid E. Grinin and Anton L. Grinin 397

19 Big history and the Singularity
Akop P. Nazaretyan 420

20 Underground metro systems: a durable geological proxy of rapid urban population growth and energy consumption during the Anthropocene

21 The coming energy transition: what comes after fossil-fueled civilization?
Joseph Voros 456

Index 481
FIGURES

5.1 Recently discovered cuneiform Tablet V of the Gilgamesh Epic, c 1800 BCE, which provides fresh insights about ethno-geographic encounters in the epic's Cedar Forest

5.2 Petroglyphs and a Picenean inscription found in the vicinity of Mt. Conero in Italy

5.4 Antler carving of faces interpreted as Dorset (below) and European (above), c fourteenth century CE, Baffin Island, Nunavut (Canada)

5.5 Sultan Firoz Shah Tughlaq of the Delhi Sultanate had this Ashokan pillar (third century BCE) removed from Topra Kalan (Haryana) to Firozabad as part of his antiquarian collections in 1356 CE

5.6 Hathor shrine (fifteenth century BCE), Deir el-Bahari, Egypt

5.7 Excavation of the Omori shell mound, Ōmon culture, Shinagawa (Tokyo), Japan, c 1877

5.8 French postcard from Buffalo Bill's Wild West Show, 1903

5.9 Anthropologist Irawati Karve conducting a field interview, Maharashtra, India c 1960

5.10 Green Dragon Bridge, near Nankau Pass, Great Wall of China

5.11 Paul Gauguin, Where Do We Come From? What Are We? Where Are We Going? D'où Venons Nous/Que Sommes Nous/Ôù Allons Nous, Tahiti, 1897

5.13 Anthropology and big history students from Symbiosis International University doing field work at a megalith in Lohegaon, Maharashtra, India on 10 May 2018
Figures

5.14 NASA's 'Plaque of Humanity', etching made for the Pioneer 10 space probe in 1972 129

9.1 Relationship between population growth and carrying capacity (Richerson, Boyd, Bettinger, 219) 222

9.2 Relationship between s-curves and carrying capacity. The asterisk (*) marks a period of severe population decline where learning is lost (Richerson, Boyd, Bettinger, 219) 222

12.1 A possible layered structure of a little big history 284

13.1 Iberian Peninsula. Inset: Asturias and the Nalón River basin 301

13.2 Anthropic changes through time in landscapes in the Nalón River basin 304

13.3 Recreation of Carboniferous period forests 309

13.4 Woolly rhinoceros lived in the Asturias area during cold phases in the Quaternary 311

13.5 Peña de Candamo Cave. Niche: Horses and aurochs 312

13.6 Spark Plasma Sintering equipment (left) in the Nanomaterials and Nanotechnology Research Centre (upper right) and nanostructured materials made therein (lower right) 316

15.1 Disciplinary continuum 342

15.2 Big history pedagogical framework 352

15.3 Mezirow's progression of autonomous thinking 355

15.4 Big history pedagogical framework and transformative learning theory 357

17.1 Cause & Consequence Activity 1 378

17.2 Cause & Consequence Activity 2 378

18.1 The phases of the Cybernetic Revolution 400

18.2 The relationship between citation frequency in scientific publications and the technologies forming MANBRIC, according to the Web of Science, 2010–2015 402

18.3 Dynamics of the global combined share of four technologies with the highest share of patent applications in 1985 (electrical machinery, measurement, machine tools, and other special machines) in comparison with the dynamics of the global combined share of patent applications in four top categories (medical, pharmaceutical, computer, and biotechnologies), 1985–2014 403

19.1 Scaling law in the phase transitions 426

20.1 Linear correlation between the number of operational metros (1859–2010) and global urban population (data from Table 20.1) 435

20.2 Development of the London Underground System from 1863 to present, showing a broad reduction in age of construction and transfer from subsurface to surface lines and stations towards the network periphery 436

20.3 The relationships of metros with surface anthropurbation, the archaeosphere and deep geology 437
20.4 Cutaway of London's five levels of traffic at Charing Cross Station (now Embankment Station), taken from the *Popular Science Magazine*, January 1921, pp. 44–45, drawing by S.W. Clatworthy

20.5 (A, B) Urban population growth and energy use 1850–2010 (based on figures in Table 20.1); (C) number of metro systems plotted against time (see also Gonzalez-Navarro & Turner, 2016); (D) urban population as a percentage of total population plotted against number of metro systems. The increase in number of metro systems in the post 1950 period is evident and approximates economic changes associated with the Great Acceleration (Steffen et al., 2015)

20.6 Global spread of major metro systems, 1863 to present, with inset maps for Europe and China
TABLES

5.1 Rendition of Eric Chaisson’s table of average energy rate densities 128
9.1 Predictions for the theory of secular cycles, in any given phase 217
9.2 Amount of free energy running through a gram per second, and the australopithecine and human free energy rate density is determined from the average energy consumption of an individual, Chaisson 2010: 28 & 36 223
18.1 The phases of the Agrarian Revolution 398
18.2 The phases of the Industrial Revolution 399
20.1 Urban primary energy use: 1850–2010 435